Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>
iDEA DREXEL ARCHIVES >>

iDEA: Drexel E-repository and Archives > Drexel Theses and Dissertations > Drexel Theses and Dissertations > Engineering bioactive polymers for the next generation of bone repair

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/474

Title: Engineering bioactive polymers for the next generation of bone repair
Authors: Ho, Emily
Keywords: Materials science;Bone substitutes;Biomedical materials
Issue Date: 6-Jun-2005
Abstract: Bone disease is a serious health condition among the aged population. In some cases of bone damage it becomes necessary to replace, recontour, and assist in the healing of the bone. Many materials have been proposed as useful replacements but none have been proven to be ideal. In this thesis, two bioactive composites were investigated for bone replacements. First reported material is a hydroxyapatite (HA) particle reinforced polymethylmethacrylate (PMMA) composite treated with a co-polymer coupling agent for mandible augmentations. The influence of the coupling agent on the local mechanical properties of the system before and after simulated biological conditions was determined by applying nano-indentation at the cross-sectional HA/PMMA interface. The local interfacial results were indicative of the global quasi static compression test results. While the coupling agent improved the interfacial and global mechanical properties before and after 24 hours in vitro immersion, it did not affect the surface bioactivity of the system. However, the addition of coupling agent did not provide long term in vitro improvement of both local and global mechanical properties of the composite. An alternative approach of combining a bioactive phase into polymer matrix was developed. The second analyzed material is an injectable composite with osteoconductivity and ideal mechanical biocompatibility for vertebral fracture fixations which we formulated and fabricated. A bioactive component was engineered into the macromolecular structure to facilitate the formation of apatite nucleation sites on a thermo-sensitive polymer, poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate (PNIPAAm-PEGDM), through incorporation of trimethacryloxypropyltrimethoxysilane (MPS). PNIPAAm-PEGDM is capable of liquid to solid phase transformation at 32°C. In this study, the phase transformation temperature (LCSTs), the in vitro mechanical properties, swelling characteristics and bioactivity of the polymers were evaluated. The addition of MPS to the polymer encouraged apatite formation and increased its compressive modulus while its LCST remained unchanged. The challenge of this material system is to balance the network-forming and bioactivity inducing MPS with the gain in elastic recovery induced by PEGDM addition to the PNIPAAm base, all while maintaining an injectable material system. This material platform offers a family of polymers that have a range of mechanical properties for various tissue replacements.
URI: http://hdl.handle.net/1860/474
Appears in Collections:Drexel Theses and Dissertations

Files in This Item:

File Description SizeFormat
Ho_Emily.pdf1.79 MBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback